SF₅-Enolates in Ti(IV)-Mediated Aldol Reactions

Maksym V. Ponomarenko,*^{,†} Simon Grabowsky,[‡] Rumpa Pal,[‡] Gerd-Volker Röschenthaler,[†] and Andrey A. Fokin[§]

[†]Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany [‡]Universität Bremen, Institut für Anorganische Chemie und Kristallographie, Leobener Str. NW2, 28359 Bremen, Germany [§]Department of Organic Chemistry, Kiev Polytechnic Institute, pr. Pobedy 37, 03056 Kiev, Ukraine

Supporting Information

ABSTRACT: The F···Ti bonding in the transition structures determines high *trans-* and *syn-*diastereoselectivities for aldol reactions of SF_5 -acetates with aldehydes in the presence of $TiCl_4$ in the non-nucleophilic solvent CH_2Cl_2 . Such bonding is canceled in nucleophilic solvents where opposite *cis-*stereochemistry is observed. The potential of thus obtained stereoisomeric SF_5 -aryl acrylates as dipolarophiles in the preparation of SF_5 -containing heterocycles is demonstrated.

P entafluoro- λ^6 -sulfanyl-containing organic compounds attract substantial interest with respect to their potential in organic electronics, pharmaceuticals, and agrochemicals,¹ as well as due to the constantly growing impact of organofluorides in up-to-date materials.² The most recent development is associated with the availability of the SF₅-building blocks that were previously difficult to access. However, the number of SF₅containing aliphatic compounds is still limited.^{1c,e}

Enolization-aldolization reactions are one of the most versatile, century-old, carbon-carbon bond forming tools for natural product synthesis and drug discovery.³ The studies of stereoselective aldol reactions are a particularly important area examining enolate geometries, the influence of mediators, and reaction conditions. The lack of methods for α -functionalization of the α -SF₅ carbonyl compounds may be attributed to instability of the starting material when reactions can be accompanied by the elimination of the SF₅ group under basic or nucleophilic conditions.⁴ Despite the progress in aldol addition reactions of fluorinated⁵ and trifluoromethylated enolates,⁶ the number of reports on reactions through SF₅enolates is limited. The first approach toward α -functionalized α -SF₅ carboxyl compounds is based on Ireland–Claisen rearrangement.' Recently, the first examples of anti-diastereoselective boron-mediated aldol additions of α -SF₅-esters were reported,⁸ where the observed anti-diastereoselectivities were explained^{8b} through the Zimmerman-Traxler model.⁹ However, as the configuration of the resulting aldol not necessary is associated with the structure of the intermediate enolate,³ the mechanistic interpretations of the stereochemical outcome still require rigorous scrutiny. Herein, we found experimental and computational evidence that the stereochemistry of the aldol reactions of model SF5-acetate promoted by TiCl4 is

determined by the coordination of titanium with the SF_5 moiety of the enol in Z-configuration.

The stability of SF₅ intermediates plays a key role^{4a,b,7,8} in the reactivity of the enols generated from α -SF₅-acetates. The reaction of methyl SF₅-acetate (1)¹⁰ with salicylaldehyde (2a) leads to complete elimination of the SF₅ group, and only product 3 and starting 2a were isolated from the reaction mixture (Scheme 1). No reaction was observed in the presence of various soft mediators³ where 1 and 2a almost fully recovered (Scheme 1).

TiCl₄ in the presence of tertiary amines has been shown to be an effective system for enolization–aldolization reactions,^{3c} especially of α -fluorinated, and α -trifluoromethylated acetates¹¹ where Ti…F interactions in the transition structures not only result in high diastereoselectivities but also prevent the fluorine group loss.^{11c,d}

"Neat, Al₂O₃, 12 h, rt. ^bPh₃P, toluene, 80 °C, 6 h. ^cEt₃N (2 equiv), CH₂Cl₂, 2 weeks, rt. ^dTiCl₄ (2 equiv), 6 h, rt. ^eBF₃-Et₂O (2 equiv), 24 h, rt.

Received: April 26, 2016 **Published:** July 6, 2016

Table 1. Aldol Condensation of 1 with Aldehydes 2b-f

$ \begin{array}{c} F_5S \\ O = \\ 1 \end{array} + \begin{array}{c} Ar \\ Ar \\ Bolvent \end{array} + \begin{array}{c} TiCl_4/Et_3N \\ Ar \\ F-4 \end{array} + \begin{array}{c} O \\ F-5 \\ F-5 \end{array} + \begin{array}{c} O \\ Ar \\ F-5 \\ Z-5 \end{array} + \begin{array}{c} O \\ Ar \\ F-6 \end{array} + \begin{array}{c} O \\ F-7 \\ F-7 \\ F-7 \end{array} + \begin{array}{c} O \\ F-7 \\ $							
entry	Ar (2)	method ^{<i>a</i>} / t (h)/ T (°C)/solvent	$4/5/6 (\%)^b$	$4/5 \text{ ratio}^c$			
1	C_6H_5 (b)	A/4/-30/THF		27/73			
2	$C_{6}H_{5}(\mathbf{b})$	A/4/rt/THF	19/5/38	62/38			
3	$C_{6}H_{5}(\mathbf{b})$	B /4/0/THF	21/44/21	32/68			
4	C_6H_5 (b)	C/4/0/THF	17/50/4	28/72			
5	$3,5-ClC_6H_3$ (c)	C/2/0/THF	12/7/-	29/71			
6	4-anisyl (d)	C/8/0/THF	30/50/7	37/63			
7	2-furyl (e)	C/3/0/THF	44/47/-	44/56			
8^d	$4 - NO_2C_6H_4$ (f)	C/2/0/THF					
9	C_6H_5 (b)	$B/6/0/CH_2Cl_2$	58/-/-	91/9			
10	C_6H_5 (b)	$D/6/0/CH_2Cl_2$	79/-/-	90/10			
11	$3,5-ClC_6H_3$ (c)	$B/6/0/CH_2Cl_2$	49/-/2	95/5			
12	$3,5-ClC_6H_3$ (c)	$D/4/0/CH_2Cl_2$	68/-/-	96/4			
13	4-anisyl (d)	$D/12/0/CH_2Cl_2$	93/-/-	97/3			
14	2-furyl (e)	$D/6/0/CH_2Cl_2$	54/3	94/6			
15	$4-NO_2C_6H_4$ (f)	$D/4/0/CH_2Cl_2$	50/-/3				

^{*a*}A: Et₃N (4 equiv) was slowly added to $1/\text{TiCl}_4$ (2 equiv, 1 M, CH₂Cl₂)/2 (1.5 equiv)/solvent; *B*: Et₃N (4 equiv) was added in one portion to $1/\text{TiCl}_4$ (2 equiv, 1 M, CH₂Cl₂)/2 (1.5 equiv)/solvent; *C*: Et₃N (4 equiv) was added in one portion to $1/\text{TiCl}_4$ (neat, 2 equiv)/2 (1.5 equiv)/THF; *D*: TiCl₄ (2 equiv, 1 M, CH₂Cl₂) was added to 1/2 (1.2 equiv)/Et₃N (3 equiv)/solvent. ^{*b*}Isolated yields of pure individual products. ^{*c*}Observed by ¹H and ¹⁹F NMR of crude mixtures after workup. ^{*d*}See the Experimental Section.

We assumed that involvement of the SF₅ group into the Ti… F interaction may enhance stability of the intermediates in the aldol reactions of the SF₅-enol generated from **1**. We found that, when an excess of Et₃N was slowly added to a suspension of **1**, **2b**, and TiCl₄ (1 M in CH₂Cl₂) in THF at -30 °C, the SF₅-containing products were observed only as admixtures. The aldehyde **2b** was almost fully recovered after workup, and the starting SF₅-ester **1** was not detected by NMR (Table 1, entry 1). In contrast, the reaction with neat TiCl₄ occurs with the formation of two isomeric SF₅-olefins *E*-**4b** and *Z*-**5b** isolated in low yields together with acetylene derivative **6b** as a main product (entry 2). The fact that olefins *E*-**4b** and *Z*-**5b** were not changed while exposed in a mixture of TiCl₄/Et₃N, as well as with excess of Et₃N in THF, shows that acetylene **6b** forms independently.

The yields of the SF₅-containing products increase if an excess of Et₃N is added in one portion into the vigorously stirred mixture of the starting materials in THF at 0 °C (entry 3, Table 1). The use of neat TiCl₄ in THF¹² slightly increases the formation of the Z-**5b** isomer (entry 4). Similar results were obtained in reactions of aromatic aldehydes 2c-e carried out under the same conditions (entries 5–7). In all cases, Z-**5b**–e isomers were formed as the main products.

However, the reactions of aldehydes $2c_sf_s$, which contain electron-withdrawing groups (Cl, NO₂) in the aromatic ring, proceed nonselectively, giving complex mixtures of products (entries 5 and 8). Along with the formation of *E*-4, *Z*-5, and 6, aldol adducts of the SF₅-ester 1 (*syn/anti*-ArCH(OH)-CH-(SF₅)CO₂CH₃) were observed in up to 10% yield by NMR. In both reactions, about half of the starting aldehydes were recovered in spite of full consumption of the ester 1.

Utilization of CH₂Cl₂ as a solvent displays dramatic changes in the stereochemical outcome and results in the formation of the α -SF₅- α , β -unsaturated esters 4 with *E*-configuration (Table 1, entries 9–15). Even the reactions of the aldehydes 2c,f, which react nonselectively under similar conditions in THF (entries 5 and 8), now proceed selectively. These results are in sharp contrast to the aldol condensations of CF_{37} ,^{11a} CN_{7} ,¹³ halo-acetates (halo = F, Cl, Br, I),^{11b} and other acetic acid derivatives¹⁴ that give Z-derivatives almost exclusively in the TiCl₄/Et₃N system.

To our surprise, a reaction of salicylaldehyde (2a) with the SF₅-ester 1 in the TiCl₄/Et₃N system in both solvents, THF and CH₂Cl₂ (methods *C* and *D*, Table 1), results in the formation of 3-SF₅-substituted coumarin 7, which was isolated in good yields (Scheme 2). The 3-SF₅-coumarin 7 is likely the

Scheme 2. Synthesis of 3-SF₅-coumarin 7

product of the aldol condensation of 1 with 2a, giving the corresponding α -SF₅- α , β -unsaturated *E*-4 ester, followed by the intramolecular *trans*-esterification.

Unfortunately, the aldol condensation of isovaleraldehyde (2g) chosen as an example of aliphatic aldehyde was accompanied by tarring, which likely occurs due to polymerization of the olefins formed in the presence of Lewis acid. Only the Z-SF₅-olefin 5g was isolated in ca. 3% yield when the reaction of 2g with 1 was carried out in THF.

The configuration of *E*-4 and *Z*-5-isomers was unambiguously confirmed by an X-ray crystallographic study of coumarin 7 and olefin *Z*-5d (see the SI) and helped to interpret unexpected interactions observed in the ¹H NMR spectra of *Z*-5-olefins. For instance, in the ¹H NMR spectra of *Z*-5 products, the distinct quintet of vinyl proton at 7.78–7.95 ppm resulting from a ${}^{4}J_{\text{HF}}$ -coupling (2.9–4.3 Hz) on four equatorial fluorine atoms of the SF₅ group is observed. This quintet is more

Figure 1. M06-2X/cc-pVDZ optimized transition structures for the Ti(IV)-promoted aldol condensations of Z-SF₅-enolate of 1 and aldehyde 2b in the absence (TS1) and in the presence (TS2) of THF (critical bond distances in Å and relative ΔH^{298} in kcal mol⁻¹ (italic), two projections shown for each TS).

downfield shifted, comparing to a singlet (7.16-7.56 ppm) of the same proton in *E*-4-structures.

In order to understand the stereoselectivity observed experimentally, we optimized the transition structures for the Ti(IV)-promoted aldol condensations between the Z-enolate of 1 and aldehyde 2b.¹⁵ To account for intermolecular interactions properly, we utilize the DFT method M06-2X¹⁶ in combination with the correlation consistent basis set cc-

pVDZ. The addition occurs through the transition structures **TS1** where strong F…Ti bonding¹⁷ is present from the Atomsin-Molecules analysis¹⁸ (Figure 1).¹⁹ Among four transition structures located (only two are shown for clarity in two projections each), the **TS1-E** is 4.9 kcal/mol lower in energy than the next lowest **TS1-Z**. Despite **TS1-E** being partially eclipsed (around the newly formed CC bond), substantial steric repulsions between the phenyl and SF₅ groups (the closest C… F contact is 2.78 Å) increase the energy of staggered conformation **TS1-Z**. Relative barriers for the cyclization are in accord with the experiment in poorly coordinating solvent CH₂Cl₂ where *trans*-olefin *E*-4 resulting from **TS1-E** dominates in the reaction mixture (**Table 1**, entries 9 and 10).

The complexation of Ti(IV) with THF¹² causes substantial structural changes switching off the F…Ti interactions in more flexible transition structures **TS2**, where **TS2-Z** is now ca. 2 kcal/mol more stable than **TS2-E** (other conformeric TSs are higher in energy). The shortest C…F contact between the phenyl and SF₅ groups in **TS2-Z** increases to 2.88 Å, thus reducing the repulsion. Despite the absence of such interactions, **TS2-E** is 2.2 kcal/mol less stable than **TS2-Z** because of partial eclipse (around the forming CC bond). Higher stability of **TS2-Z** is in accord with the experiment where *cis*-olefin *Z*-5 predominantly forms. The relatively small energetic gap between **TS2-Z** and **TS2-E** leads to the formation of substantial amounts of *trans*-product *E*-4 (Table 1, entries 3 and 4).

Additionally, the antiperiplanar orientation of the hydrogen atom of the aldehyde fragment and the SF_5 group in the product derived from **TS2-Z** may facilitate Et_3N -mediated E_N2 elimination of the SF_5 group, yielding acetylenes **6**. This side reaction is more operative for the electron-poor aldehydes **2c**,f.

To the best of our knowledge, the aldol condensation between ester 1 and aldehydes 2 mediated by TiCl₄ represents the first one-pot synthetic approach toward a family of α -SF₅- α_{β} -unsaturated carbonyl derivatives that are potentially useful in the chemistry of biologically active compounds,²⁰ especially coumarines,²¹ and new materials.¹³ To appreciate the reactivity of SF₅-olefins E-4 and Z-5, we tested several reactions typical for electron-poor α,β -unsaturated carbonyl compounds. Under the Michael reaction conditions with hydrazine hydrate, piperidine, NaCN/AcOH system, and TMSCN, the SF₅ group loss was observed (see the Experimental Section). However, the electron-poor double bond of E-4b and Z-5b shows appreciable reactivity in the classical 1,3-dipolar cycloaddition reaction with an azomethine ylide synthone N-(methoxymethyl)-N-[(trimethylsilyl)methyl]-N-benzylamine (8), where SF₅-pyrrolidines 9 and 10 were formed in good yields (Scheme 3).

The ability of *E*-4 and *Z*-5 SF₅-olefins to undergo the cycloaddition reactions opens convenient ways to various SF₅-substituted heterocycles.^{4a,23,24}

The formation of aldol adducts, methyl β -hydroxy- α -SF₅- β arylpropanoates, as byproducts in the condensation of **1** with aldehydes **2c**,**f** (entries 5 and 8, Table 1) prompted us to study

the TiCl₄-mediated reactions toward synthesis of corresponding α -SF₅-aldols. We assumed that the strong F…Ti bonding in **TS1** (Figure 1) for the condensation in CH₂Cl₂ may provide high diastereoselectivities similarly to the aldol addition of a Tienolate of α -CF₃ ketones with aldehydes.^{11d} The enolization of the ester **1** did not proceed in THF, likely due to strong complexation of TiCl₄ with two THF-molecules and its insolubility at low temperatures. In contrast, in CH₂Cl₂, we indeed found that the enolate **I** (Table 2) can be generated *in situ* by adding only a slight excess of Et₃N to a mixture of α -SF₅ester **1** and TiCl₄.

Table 2. Aldol Addition of 1 with Aldehydes 2							
$\stackrel{F_5S}{\overset{a}{\rightarrow}}$	$ = \begin{bmatrix} F_5 S & O \\ C I_3 T I & O \end{bmatrix} $	1. b OH 2. c R R	0 ↓ 0 + F₅				
1 ′	I	syn- 11		anti- 12			
entry	R (2)	time (h)	11 $(\%)^a$	syn/anti ^b			
1	2-HO- $C_6H_4(a)$	10	68	93/7			
2	$C_{6}H_{5}(b)$	7	71	98/2			
3	$3,5-ClC_{6}H_{3}(c)$	7	79	only syn			
4	4-anisyl (d)	10	48	65/35			
5	2-furyl (e)	10	52	only syn			
6	$4-NO_2C_6H_4$ (f)	7	80	only syn			
7	isobutyl (g)	10	82	94/6			

^{*a*}Isolated yields; entries 1, 4, 7: yields of 11/12 mixtures. ^{*b*}The syn-11/ anti-12 ratio was detected by ¹⁹F and ¹H NMR of the reaction mixtures.

The enolate **I** is stable enough at -78 °C, and further addition of aldehydes **2a**–**e** and TiCl₄ results in the formation of β -hydroxy- α -SF₅-propanoates (**11** and **12**, Table 2) in good yields and high *syn*-diastereoselectivity. The later was confirmed through the X-ray crystallographic study of *syn*-**11f** (see the SI), and from spin–spin couplings of ^{*a*}H–^{β}H protons observed in ¹H NMR spectra of *syn*-**11** (${}^{3}J_{\alpha,\beta} = 8.4-9.6$ Hz) comparing to *gauche*-^{*a*}H–^{β}H interaction in *anti*-**12** (${}^{3}J_{\alpha,\beta} = 4.4$ Hz).^{8b} This transformation is suitable both for aromatic (**2a**–**f**) and for aliphatic (**2g**) aldehydes (Table 2).

In conclusion, we have developed an efficient synthetic approach toward α -SF₅- $\alpha_{\mu}\beta$ -unsaturated carbonyl compounds (4, 5, 7) and syn- β -hydroxy- α -SF₅-propanoates (11) from aldehydes and methyl SF5-acetate in the TiCl4/Et3N system. We demonstrated that the stereochemical outcome of the aldol reactions of SF5-acetates is strongly determined by F...M bonding between the SF₅ group and Ti(IV) in the transition structures. This results in almost exclusive formation of transolefins and syn-aldols in poorly coordinating solvents like CH₂Cl₂. The nucleophilic THF switches off such intramolecular F…Ti coordination, giving predominantly cis-olefins. Thus, previously studied⁸ formation of *anti*-aldols in the boronmediated reactions of SF5-acetates is not necessarily associated with participation of E-SF₅-enolate in the Zimmerman-Traxler transition state. The use of $TiCl_4$ as a mediator of aldol reactions gives access to stereoisomeric α -SF₅ esters, potentially useful for medicinal and material applications.

EXPERIMENTAL SECTION

General Information. All reagents from commercial suppliers were used without purification. 1 H NMR spectra were recorded on 400 or 401 MHz instruments. 13 C and 19 F NMR spectra were

recorded on 100 or 101 MHz, and 376 or 377 MHz instruments, respectively. Chemical shifts are reported relative to TMS, $CHCl_3$ ($\delta = 7.26$ ppm, ¹H NMR), $CDCl_3$ ($\delta = 77.16$ ppm, ¹³C NMR), and CCl_3F (¹⁹F NMR) as internal standards. Column chromatography was performed on silica gel 60 (230–400 mesh). All nonaqueous reactions were carried out in an inert atmosphere of dry argon or nitrogen. THF and CH_2Cl_2 were preliminarily dried. HRMS (EI) spectra were obtained on a double-focusing mass spectrometer at 70 eV.

Methyl 2-(pentafluoro- λ^6 -sulfanyl)acetate (1) was prepared according to the previously reported method.¹⁰ The spectral data of **6f**,**c**,^{25a} **6b**,^{25b} and **6d**,^{25c} correspond with the literature data.

General Procedures of the Aldol Condensations. *3-(Piperidin-1-yl)-2H-chromen-2-one* (**3**). 0.17g (2.00 mmol) of piperidine was added at 0 °C to a mixture of **2a** (0.30 g, 2.45 mmol) and 1 (0.49 g, 2.45 mmol) in 2 mL of toluene. The mixture was stirred for 24 h at room temperature; then it was filtered through a thin layer of SiO₂ eluting with CH₂Cl₂. Volatiles were removed under reduced pressure. The product **3** (0.21g, 37%) was crystallized from an *n*-hexane/CH₂Cl₂ mixture. Yellow crystals; mp = 134–135 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.35 (dd, J_{HH} = 7.6, 1.3 Hz, 1H), 7.33–7.26 (m, 2H), 7.19 (td, J_{HH} = 7.5, 1.5 Hz, 1H), 6.81 (s, 1H), 3.13 (dd, J_{HH} = 5.4, 5.1 Hz, 4H), 1.75 (m, 4H), 1.61 (m, 2H); ¹³C NMR (101 MHz, CDCl₃): δ 159.0, 150.3, 139.0, 127.9, 126.2, 124.4, 120.7, 119.9, 119.9, 116.0, 50.8, 25.7, 24.3. HRMS (EI) Calcd for C₁₄H₁₅NO₂ [M]⁺: 229.10973, found: 229.10989.

Method A. To a mixture of **2b** (0.35 g, 3.30 mmol) and **1** (0.44 g, 2.20 mmol) in 10 mL of THF was added a TiCl₄ solution (4.42 mL, 4.42 mmol, 1 M in CH₂Cl₂) at 0 °C. In 1–2 min, 0.895 g (8.85 mmol) of Et₃N was added slowly (15 min) to the mixture at the appropriate temperature (rt or -30 °C). Then, the cooling bath was removed, and the mixture was stirred for 4 h at room temperature. CH₂Cl₂ (30 mL) was added, and the resulting mixture was washed with water (3 × 5 mL). After drying over sodium sulfate and evaporating the solvent, the crude mixture was separated by column chromatography on SiO₂ (*n*-hexane/CH₂Cl₂ = 3/1), giving *E*-4b (0.120 g, 19%), *Z*-5b (0.320 g, 5%), and 6 (0.134 g, 38%).

Method *B*. Reactions were carried out similarly to method *A* in THF or CH₂Cl₂ solution. Et₃N was added to a vigorously stirred mixture of $2/1/\text{TiCl}_4$ (1 M, CH₂Cl₂) in one portion through a syringe at 0 °C. The cooling bath was removed in 15 min, and the mixture was stirred for 4–6 h at room temperature. The reaction mixture was worked up similarly to method *A*. The products *E*-4b, *Z*-5b, 6, and *E*-4c were isolated by column chromatography on SiO₂ (*n*-hexane/CH₂Cl₂ = 3/1).

Method C. THF (12 mL) was added slowly at 0 °C to neat TiCl₄ (0.8 g, 4.23 mmol) (exothermic). To the vigorously stirred yellow suspension of the TiCl₄/THF complex in THF were added **2b** (0.33 g, 3.11 mmol) and **1** (0.42 g, 2.10 mmol) quickly at 0 °C. In 1 min, Et₃N (0.85 g, 8.40 mmol) was added in one portion through a syringe to the mixture. The cooling bath was removed in 15 min, and the mixture was stirred for 4 h at room temperature. CH_2Cl_2 (50 mL) was added, and the resulting mixture was washed with water (3 × 10 mL). After drying over sodium sulfate, the solvent was evaporated to obtain the crude mixture of products that were separated by column chromatography on SiO₂ (*n*-hexane/CH₂Cl₂ = 3/1), giving *E*-4b (0.103 g, 17%), *Z*-5b (0.303 g, 50%), and 6 (0.013 g, 4%).

Method *D*. To a vigorously stirred mixture of 2b (0.264 g, 2.49 mmol), 1 (0.42 g, 2.10 mmol), and Et₃N (0.637 g, 6.30 mmol) in CH₂Cl₂ (12 mL) was added a solution of TiCl₄ (4.23 mL, 1 M in CH₂Cl₂, 4.23 mmol) over 5 min at 0 °C. The cooling bath was removed in 15 min, and the mixture was stirred for 6 h at room temperature. CH₂Cl₂ (20 mL) was added, and the reaction mixture was washed with water (3 × 10 mL). After drying over sodium sulfate and evaporating the solvent, *E*-4b was isolated in 79% yield (0.478 g) by column chromatography on SiO₂ (*n*-hexane/CH₂Cl₂ = 1/1).

Methyl (E)-2-(*Pentafluoro-λ*⁶-sulfanyl)-3-phenylacrylate (E-4b). Colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 7.51 (s, 1H, H-C= CSF₅), 7.44–7.36 (m, 3H), 7.35–7.28 (m, 1H), 3.77 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 163.2 (quin, ³J = 2.1 Hz, C=O), 146.1 (quin, ²J = 17.4 Hz, C-SF₅), 137.2 (quin, ³J = 6.1 Hz), 131.1, 130.8, 129.1, 128.7, 53.5 (OCH₃); ¹⁹F NMR (376 MHz, CDCl₃): δ 81.4 (9 lines, A-part), 63.6 (d, ²J_{FF} = 150.8 Hz, B₄-part); HRMS (EI) Calcd for C₁₀H₃F₅O₂S [M]⁺: 288.02434, found: 288.02329.

Methyl (Z)-2-(Pentafluoro- λ^6 -sulfanyl)-3-phenylacrylate (Z-5b). Colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 7.93 (quin, ⁴J_{HF} = 4.3 Hz, 1H, H-C=CSF₅), 7.45–7.35 (m, 3H), 7.35–7.28 (m, 2H), 3.91 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 162.7 (quin, ³J = 3.2 Hz, C=O), 145.2 (quin, ²J = 16.5 Hz, C-SF₅), 145.2, 143.5 (quin, ³J = 3.7 Hz), 133.5, 129.3, 128.4, 127.6 (quin, ⁵J = 2.4 Hz), 53.8 (OCH₃); ¹⁹F NMR (376 MHz, CDCl₃): δ 79.9 (9 lines, A-part), 69.9 (dm, ²J_{FF} = 151.8 Hz, B₄-part); HRMS (EI) Calcd for C₁₀H₉F₅O₂S [M]⁺: 288.02434, found: 288.02575.

Methyl (*E*)-3-(3,4-*Dichlorophenyl*)-2-(*pentafluoro*-λ⁶-*sulfanyl*)*acrylate* (*E*-4c). *E*-4c was obtained from 0.398 g (1.99 mmol) of 1 by method *D* in 68% yield (0.482 g) after column chromatography (*n*hexane/Et₂O = 10/1). Yellowish oil; ¹H NMR (401 MHz, CDCl₃): δ 7.47 (d, *J*_{HH} = 8.4 Hz, 1H), 7.42 (d, *J*_{HH} = 2.1 Hz, 1H), 7.39 (s, 1H, H-C=CSF₅), 7.15 (dd, *J*_{HH} = 8.4, 2.1 Hz, 1H), 3.79 (s, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 162.6 (d, ³*J* = 2.3 Hz, C=O), 147.6 (quin, ²*J* = 17.8 Hz, C-SF₅), 135.1, 134.7 (quin, ³*J* = 6.3 Hz), 133.6, 131.2, 131.1, 130.5, 127.7, 53.8 (OCH₃); ¹⁹F NMR (377 MHz, CDCl₃): δ 79.30 (9 lines, A-part), 63.57 (d, ²*J*_{FF} = 151.0 Hz, B₄-part); HRMS (EI) Calcd for C₁₀H₇Cl₂F₅O₂S [M]⁺: 355.94640, found: 355.94550.

Methyl (*Z*)-3-(3,4-*Dichlorophenyl*)-2-(*pentafluoro*-λ⁶-*sulfanyl*)*acrylate* (*Z*-5*c*). *Z*-5*c* was obtained from 0.598 g (2.99 mmol) of **1** by method *C* in 7% yield (0.075 g) after column chromatography (*n*hexane/CH₂Cl₂ = 3/1). Yellowish oil; ¹H NMR (401 MHz, CDCl₃): δ 7.78 (quin, ⁴J_{HF} = 4.2 Hz, 1H, H-C=CSF₅), 7.47 (d, *J*_{HH} = 8.4 Hz, 1H), 7.37 (s, 1H), 7.12 (d, *J*_{HH} = 8.4 Hz, 1H), 3.90 (s, 3H, OCH₃); ¹³C NMR (101 MHz, CDCl₃): δ 162.1 (quin, ³J = 3.1 Hz, C=O), 146.7 (quin, ²J = 15.8 Hz, C-SF₅), 140.6 (quin, ³J = 3.6 Hz), 133.7, 133.2, 132.9, 130.5, 129.4 (quin, ⁵J = 2.1 Hz), 126.8 (quin, ⁵J = 2.5 Hz), 54.0 (OCH₃); ¹⁹F NMR (377 MHz, CDCl₃): δ 80.5 (9 lines, Apart), 71.12 (dm, ²J_{FF} = 152.2 Hz, B₄-part); HRMS (EI) Calcd for C₁₀H₇Cl₂F₅O₂S [M]⁺: 355.94640, found: 355.94814.

Methyl (*E*)-3-(4-*Methoxyphenyl*)-2-(*pentafluoro*- λ^{6} -*sulfanyl*)*acrylate* (*E*-4d). *E*-4d was obtained from 0.369 g (1.84 mmol) of 1 by method *D* in 93% yield (0.547 g) after column chromatography (CH₂Cl₂), as well as from 0.496 g (2.48 mmol) of 1 by method *C* in 30% yield (0.237 g) after column chromatography (*n*-hexane/CH₂Cl₂ = 1/1). Colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 7.42 (s, 1H, H-C=CSF₅), 7.27 (dm, *J*_{HH} = 9.2 Hz, 2H), 6.90 (dm, *J*_{HH} = 8.9 Hz, 2H), 3.83 (s, 3H), 3.81 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 163.7 (quin, *J* = 2.0 Hz, C=O), 161.8, 144.1 (quin, ²*J* = 17.3 Hz, C-SF₅), 136.9 (quin, ³*J* = 6.0 Hz), 130.8, 123.2, 114.7, 55.5, 53.6; ¹⁹F NMR (376 MHz, CDCl₃): δ 81.4 (9 lines, A-part), 64.1 (d, ²*J*_{FF} = 150.7 Hz, B₄-part); HRMS (EI) Calcd for C₁₁H₁₁F₅O₃S [M]⁺: 318.03491, found: 318.03474.

Methyl (*Z*)-3-(4-*Methoxyphenyl*)-2-(*pentafluoro*-λ⁶-*sulfanyl*)*acrylate* (*Z*-5d). *Z*-5d was obtained from 0.496 g (2.48 mmol) of 1 by method C in 50% yield (0.394 g) after column chromatography (*n*hexane/CH₂Cl₂ = 1/1). White crystals; mp = 64–65 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.84 (quin, ⁴*J*_{HF} = 4.0 Hz, 1H, H-C=CSF₅), 7.49 (dm, *J*_{HH} = 8.8 Hz, 2H), 6.92 (d, *J*_{HH} = 8.9 Hz, 2H), 3.89 (s, 3H), 3.84 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 163.1 (quin, ³*J* = 3.4 Hz, C=O), 161.5, 143.7 (quin, ³*J* = 3.6 Hz), 142.0 (quin, ²*J* = 16.9 Hz, C-SF₅), 132.1 (quin, ⁵*J* = 3.2 Hz), 124.7, 114.1, 55.5, 53.6; ¹⁹F NMR (376 MHz, CDCl₃): δ 81.4 (9 lines, A-part), 68.8 (dm, ²*J*_{FF} = 152.0 Hz, B₄-part); HRMS (EI) Calcd for C₁₁H₁₁F₅O₃S [M]⁺: 318.03491, found: 318.03484.

Methyl (*E*)-3-(*Furan*-2-yl)-2-(*pentafluoro*- λ^{6} -sulfanyl)acrylate (*E*-**4e**). *E*-**4e** was obtained from 0.250 g (1.25 mmol) of **1** by method *D* in 54% yield (0.188 g) after column chromatography (*n*-hexane/CH₂Cl₂ = 1/1), as well as from 0.240 g (1.20 mmol) of **1** by method *C* in 44% yield (0.147 g) after column chromatography (*n*-hexane/Et₂O = 5/1). Yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.51 (d, *J*_{HH} = 1.8 Hz, 1H), 7.16 (s, 1H, H-C=CSF₅), 6.73 (d, *J*_{HH} = 3.5 Hz, 1H), 6.50 (dd, *J*_{HH} = 3.5, 1.8 Hz, 1H), 3.93 (s, 3H, OCH₃); ¹³C NMR (101 MHz, CDCl₃): δ 163.1 (quin, ³*J* = 2.1 Hz, C=O), 146.5, 145.8, 142.3 (quin, ²*J* = 18.6 Hz, C-SF₅), 123.1 (quin, ³*J* = 6.5 Hz), 118.6, 112.7, 53.42

The Journal of Organic Chemistry

(OCH₃); ¹⁹F NMR (376 MHz, CDCl₃): δ 80.8 (9 lines, A-part), 64.6 (d, ²*J*_{FF} = 151.0 Hz, B₄-part); HRMS (EI) Calcd for C₈H₇F₅O₃S [M]⁺: 278.00361, found: 278.00429.

Methyl (*Z*)-3-(*Furan*-2-*yl*)-2-(*pentafluoro*-λ⁶-*sulfanyl*)*acrylate* (*Z*-**5***e*). *Z*-**5***e* was obtained from 0.240 g (1.20 mmol) of 1 by method C in 47% yield (0.157 g) after column chromatography (*n*-hexane/Et₂O = 5/1). White crystals; mp = 54–55 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.95 (quin, ⁴*J*_{HF} = 2.9 Hz, 1H, H-C=CSF₅), 7.69 (d, *J*_{HH} = 1.6 Hz, 1H), 7.36 (bs, 1H), 6.62 (dd, *J*_{HH} = 3.7, 1.6 Hz, 1H), 3.87 (s, 3H, OCH₃); ¹³C NMR (101 MHz, CDCl₃): δ 162.2 (quin, ³*J* = 3.0 Hz, C=O), 148.0, 147.4, 136.4 (quin, ²*J* = 19.3 Hz, C-SF₅), 131.2 (quin, ³*J* = 3.2 Hz), 123.0 (d, ⁵*J* = 4.4 Hz), 114.0, 53.5 (OCH₃); ¹⁹F NMR (376 MHz, CDCl₃): δ 80.7 (9 lines, A-part), 64.9 (dm, ²*J*_{FF} = 151.3 Hz, B₄-part); HRMS (EI) Calcd for C₈H₇F₅O₃S [M]⁺: 278.00306, found: 278.00402.

Methyl (E)-3-(4-Nitrophenyl)-2-(pentafluoro- λ^6 -sulfanyl)acrylate (E-4f). E-4f was obtained from 0.399 g (1.99 mmol) of 1 by method **D** in 50% yield (0.333 g) after column chromatography (*n*-hexane/Et₂O = 5/1). When the same reaction was carried out at -78 °C for 4 h, the aldol adduct syn-11f was observed as a main product formed in 15–18% yield according to ¹H and ¹⁹F NMR spectra of the reaction mixture. The olefin E-4f was observed in ca. 10% yield. Yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.26 (dm, J = 8.7 Hz, 2H), 7.56 (s, 1H, H-C=CSF₅), 7.51 (dm, J = 8.7 Hz, 2H), 3.77 (s, 3H, OCH₃); ¹³C NMR (101 MHz, CDCl₃): δ 162.3 (quin, ³J = 2.0 Hz, C=O), 149.0 (quin, ²J = 18.8 Hz, C-SF₅), 148.8, 137.6, 134.9 (quin, ³J = 6.2 Hz), 129.5, 124.3, 54.0 (OCH₃); ¹⁹F NMR (376 MHz, CDCl₃): δ 78.6 (9 lines, A-part), 63.4 (d, ²J_{FF} = 151.1 Hz, B₄-part); HRMS (EI) Calcd for C₁₀H₈F₅NO₄S [M]⁺: 333.00942, found: 333.01115.

2f (0.47 g, 3.11 mmol) reacts with **1** (0.42 g, 2.10 mmol) in THF (method C), giving a complex mixture of products, where *E*-**4f** (4%), *syn*-**11f** (8%), *anti*-**12f** (2%), **6f** (25%), and methyl (*Z*)-3-hydroxy-3-(4-nitrophenyl)acrylate²⁶ (**13**, 7%) were observed. Yields of these products were appreciated by ¹H and ¹⁹F NMR spectra.

Methyl (Z)-5-Methyl-2-(pentafluoro- λ^6 -sulfanyl)hex-2-enoate (Z-5g). Z-5g was obtained from 0.333 g (1.66 mmol) of 1 by method C in 3% yield (0.012 g) after column chromatography (*n*-hexane/CH₂Cl₂ = 1/1). An appropriate sample for HRSM was not obtained due to difficulties in separation, and low yield of Z-5g. The structure was assigned based on characteristic multiples in ¹H NMR aroused from interactions with the SF₅ group observed also for other Z-5 products. Yellow oil; 0.009 g (<3%, ~80% of purity by NMR, from 0.333 g, 1.66 mmol of 1); ¹H NMR (400 MHz, CDCl₃): δ 7.18 (m, ⁴J_{HF} = 4.6 Hz, 1H, H-C=CSF₅), 3.83 (s, 3H, OCH₃), 2.49 (m, 2H), 1.84 (sep, ³J_{HH} = 6.7 Hz, 1H), 0.97 (d, ³J_{HH} = 6.7 Hz, 6H, 2CH₃); ¹³C NMR (101 MHz, CDCl₃): δ 161.9 (quin, ³J = 3.3 Hz, C=O), 150.0 (quin, ³J = 2.6 Hz), 145.8 (d, ²J = 14.5 Hz, C-SF₅), 53.4 (OCH₃), 39.5 (quin, ⁴J = 2.9 Hz), 28.5, 22.5; ¹⁹F NMR (376 MHz, CDCl₃): δ 81.8 (9 lines, Apart), 67.61 (dm, ²J_{FF} = 150.6 Hz, B₄-part).

3-(Pentafluoro-λ⁶-sulfanyl)-2H-chromen-2-one (7). 7 was obtained from 0.464 g (2.32 mmol) of 1 by method *D* in 85% yield (0.543 g) after crystallization of the crude product from a CH₂Cl₂/*n*-hexane mixture, as well as from 0.442 g (2.21 mmol) of 1 by method *C* in 66% yield (0.397 g) after column chromatography (*n*-hexane/CH₂Cl₂ = 3/1). White crystals; mp = 121–122 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.37 (s, 1H, H-C=CSF₅), 7.70 (dd, *J*_{HH} = 7.5, 1.6 Hz, 1H), 7.65 (dd, *J*_{HH} = 7.5, 1.4 Hz, 1H), 7.34–7.44 (m, 2H); ¹³C NMR (101 MHz, CDCl₃): δ 154.7, 152.9 (quin, ³*J* = 1.4 Hz, C=O), 146.0 (quin, ³*J* = 4.6 Hz), 139.6 (quin, ²*J* = 17.8 Hz, C-SF₅), 135.2, 130.2, 125.6, 116.9, 116.4; ¹⁹F NMR (376 MHz, CDCl₃): δ 79.1 (9 lines, A-part), 64.13 (d, ²*J*_{FF} = 152.7 Hz, B₄-part); HRMS (EI) Calcd for C₉H₄F₅O₂S [M]⁺: 271.99249, found: 271.99219.

Methyl (\overline{Z})- $\overline{3}$ -($\overline{2}$ -Hydroxyphenyl)-2-(pentafluoro- λ^6 -sulfanyl)acrylate (\overline{Z} - \overline{Sa}). Z- \overline{Sa} was obtained from 0.442 g (2.21 mmol) of **1** by method C in 7% yield (0.046 g) after column chromatography (*n*hexane/CH₂Cl₂ = 3/1). Yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.93 (quin, ⁴J_{HF} = 4.3 Hz, 1H, H-C=CSF₅), 7.31–7.23 (m, 2H), 6.96 (td, J_{HH} = 7.5, 1.0 Hz, 1H), 6.82 (dd, J_{HH} = 8.6, 1.0 Hz, 1H), 5.54 (bs, 1H, OH), 3.90 (s, 3H, OCH₃); ¹³C NMR (101 MHz, CDCl₃): δ 162.9 (quin, ³J = 3.0 Hz, C=O), 152.7, 146.4 (quin, ²J = 15.6 Hz, C-SF₅), 140.2 (quin, *J* = 3.5 Hz), 131.0, 128.8 (quin, *J* = 3.7 Hz), 120.9, 120.7, 115.4, 53.8 (OCH₃); ⁹F NMR (376 MHz, CDCl₃): δ 80.0 (9 lines, A-part), 69.3 (dm, ²*J*_{FF} = 152.5 Hz, B₄-part); HRMS (EI) Calcd for C₁₀H₉F₅O₃S [M]⁺: 304.01926, found: 304.01850.

Preparation of 9 and 10. TFA (0.07 mL, 1 M in CH_2Cl_2) was added to a stirred mixture of *E*-4b (0.154 g, 0.67 mmol) and 8 (0.192 g, 0.81 mmol) at 0 °C. The cooling bath was removed in 10–15 min, and the mixture was stirred for 6 h at room temperature. CH_2Cl_2 (20 mL) was added, and the mixture was washed with saturated aqua solution of NaHCO₃ (2 × 10 mL), then with water (3 × 10 mL). After drying over sodium sulfate, the solvent was evaporated, giving crude 9 mainly contaminated by *E*-4b. 9 was obtained in 59% yield (0.168 g) by column chromatography on SiO₂ (*n*-hexane/Et₂O = 1/1). In a similar manner, 10 was obtained in 83% yield (0.216 g) from 0.141 g (0.62 mmol) of *Z*-5b. It was difficult to obtain elemental analysis, as well as HRMS, of clean 9 and 10 due to their instability; the NMR spectra provided in the Supporting Information give evidence of the compounds' purities.

 $\begin{array}{l} \hat{Methyl} \quad (\hat{3},4)\mbox{-}1\mbox{-}Benzyl\mbox{-}3\mbox{-}(pentafluoro\mbox{-}\lambda^6\mbox{-}sulfanyl\mbox{)}\mbox{-}4\mbox{-}phenylpyr-rolidine\mbox{-}3\mbox{-}carboxylate \mbox{(9)}. Yellowish oil; 1 H NMR (400 MHz, CDCl_3): δ 7.43 (dm, $J_{\rm HH}$ = 8.3 Hz, 2H\mbox{)}, 7.36 (tm, $J_{\rm HH}$ = 7.5 Hz, 4H\mbox{)}, 7.28 (m, 3H\mbox{)}, 7.21 (m, 1H\mbox{)}, 4.24 (dd, $^{3}J_{\rm HH}$ = 7.6, 1.6 Hz, 1H\mbox{, CHPh}\mbox{)}, 4.07 (d, $^{2}J_{\rm HH}$ = 10.5 Hz, 1H\mbox{)}, 4.24 (dd, $^{3}J_{\rm HH}$ = 7.6, 1.6 Hz, 1H\mbox{, CHPh}\mbox{)}, 3.06 (d, $^{2}J_{\rm AB}$ = 13.2 Hz, 1H\mbox{, CHPh}\mbox{)}, 3.07 (s, 3H\mbox{, OCH}_3\mbox{)}, 3.04 (d, $^{2}J_{\rm HH}$ = 10.5 Hz, 1H\mbox{)}, 2.98 (bd, $^{2}J_{\rm AB}$ = 8.8 Hz, 1H\mbox{)}, 2.90 (dd, $^{2}J_{\rm AB}$ = 8.8 Hz, $^{3}J_{\rm HH}$ = 7.6 Hz, 1H\mbox{)}; 1^{3}$C NMR (101 MHz, CDCl_3): δ 165.9 (C=O)\mbox{)}, 143.3, 138.1, 128.6, 128.5, 128.4, 128.4, 127.4, 127.2, 103.6 (quin, $^{2}J_{\rm S}$ = 6.0 Hz, C-SF_5\mbox{)}, 61.7, 61.1 (quin, $^{3}J_{\rm S}$ = 4.5 Hz, CH_2\mbox{)}, 59.7 (CH_2Ph)\mbox{,} 52.3 (OCH_3\mbox{)}, 52.3 (quin, $^{3}J_{\rm S}$ = 2.9 Hz, CHPh\mbox{)}; 19F NMR (376 MHz, CDCl_3): δ 84.5 (9 lines, A-part), 57.88 (d, $^{2}J_{\rm FF}$ = 144.3 Hz, B_4-part). \\ \end{array}$

Methyl (3,4)-1-Benzyl-3-(pentafluoro- λ^6 -sulfanyl)-4-phenylpyrrolidine-3-carboxylate (10). Yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.56 (d, J_{HH} = 7.4 Hz, 2H), 7.38–7.24 (m, 8H), 4.39 (dd, ³J_{HH} = 6.0, 1.7 Hz, 1H, CHPh), 3.93 (s, 3H, OCH₃), 3.91 (dm, ²J_{AB} = 10.8 Hz, 1H), 3.88 (d, ²J_{AB} = 13.5 Hz, 1H, CH₂Ph), 3.78 (d, ²J_{AB} = 13.5 Hz, 1H, CH₂Ph), 3.70 (d, ²J_{AB} = 10.8 Hz, 1H), 3.04 (dd, ²J_{AB} = 9.7 Hz, ³J_{HH} = 1.7 Hz, 1H), 2.93 (dd, ²J_{AB} = 9.7 Hz, ³J_{HH} = 6.2 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 168.4 (C=O), 141.1, 138.8, 129.8, 128.6, 128.4, 128.3, 127.4, 127.3, 99.8 (m, ²J = 4.0 Hz, C-SF₅), 60.3 (CH₂Ph), 59.1, 56.2 (m, J = 4.3 Hz, CH₂), 54.2 (OCH₃), 52.40 (CHPh); ¹⁹F NMR (376 MHz, CDCl₃): δ 82.3 (quin, ²J_{FF} = 146.3 Hz, 1F), 65.6 (d, ²J_{FF} = 146.3 Hz, 4F).

Methyl 1-Benzyl-4-phenyl-2,5-dihydro-1H-pyrrole-3-carboxylate (17). The products 9 and 10 decompose after 2 weeks of storage at room temperature, giving the product of a formal $[HSF_5]$ elimination 17. The mixtures obtained after storage of 9 (0.150 g, 0.35 mmol) and 10 (0.180 g, 0.43 mmol) were diluted in CH_2Cl_2 (15 mL), and combined. The CH_2Cl_2 solution was washed with a saturated aqua solution of NaHCO₃ (2 × 10 mL), then with water (1 × 10 mL), and dried with Na₂SO₄. The solvent was evaporated. 17 was isolated in 49% yield (0.113 g) by column chromatography on SiO₂ (CH₂Cl₂/ EtOAc = 10/1).

Yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.53–7.19 (m, 10H), 3.92 (m, 4H, 2CH₂), 3.85 (s, 2H, CH₂Ph), 3.64 (s, 3H, OCH₃); ¹³C NMR (101 MHz, CDCl₃): δ 164.5, 150.9, 138.7, 133.8, 128.9, 128.8, 128.6, 128.2, 128.0, 127.4, 125.6, 65.3, 61.5, 60.1, 51.4; MS (EI, *m/z*): 291 (C₁₉H₁₇NO₂⁺, 100), 260 (C₁₉H₁₇NO₂–OCH₃⁺, 32), 232 (C₁₉H₁₇NO₂–CO₂CH₃⁺, 7), 91(C₆H₃CH₂⁺, 80); Anal. Calcd for C₁₉H₁₉NO₂: C, 77.79; H, 6.53; N, 4.77. Found: C, 77.58; H, 6.51; N, 4.75.

Michael Reactions of SF_5 -olefins E-4b and Z-5b.

- 1. Hydrazine monohydrate (0.019 g, 0.38 mmol) was added at 0 $^{\circ}$ C to a stirred solution of Z-**5b** (0.11 g, 0.38 mmol) in EtOH (3 mL). The mixture was stirred for 6 h at room temperature. Volatiles were removed in vacuo. SF₅ products and **6b** were not found in the mixture by ¹H and ¹⁹F NMR.
- Piperidine (0.008 g, 0.098 mmol) was added at 0 °C to a stirred solution of *E*-4b (0.014 g, 0.049 mmol) in CH₂Cl₂ (1 mL). The

mixture was stirred for 2 h at 0 °C, and then for 12 h at room temperature. The resulting mixture was passed through a short column of SiO₂ (CH₂Cl₂/AcOEt = 5/1). After evaporation of the solvents, methyl *anti*-2,3-dipiperidino-3-phenyl propanoate²⁷ (14) was obtained in 63% yield (0.010 g).

- 3. TMSCN (0.031 g, 0.312 mmol) was added at -45 °C to a stirred solution of Z-**5b** (0.074 g, 0.257 mmol) in CH₂Cl₂ (5 mL). The cooling bath was removed in 1 h, and the mixture was stirred at room temperature for 5 days. After washing of the reaction mixture with aqua NaHCO₃ (3 × 2 mL), the CH₂Cl₂ layer was dried with Na₂SO₄, and then the solvent was evaporated in vacuo, giving only 0.07 g of the starting Z-**5b**. The same reaction carried out in the presence of TiCl₄ (0.26 mL, 1.0 M in CH₂Cl₂) led to full degradation of the starting olefin in 6 h.
- 4. A solution of NaCN (0.074 g, 1.5 mmol) in water (1 mL) was added at 0 °C to a stirred solution of Z-**5b** (0.108 g, 0.375 mmol) and acetic acid (0.045g, 0.750 mmol) in THF (5 mL). The cooling bath was removed after 15 min, and the reaction mixture was stirred for 24 h at room temperature. 10 mL of CH_2Cl_2 was added, and the mixture was washed with water (3 × 3 mL). The organic layer was dried with Na₂SO₄, and all volatiles were evaporated in vacuo. The resulting mixture was separated by column chromatography on SiO₂ (CH₂Cl₂), giving methyl (Z)-3-cyano-3-phenylacrylate²⁸ (40% yield, 0.028 g) and methyl (E)-3-cyano-3-phenylacrylate²⁵ (26% yield, 0.018 g).

General Procedure for the Aldol Addition. A solution of TiCl₄ (1.04 mL, 1 M in CH₂Cl₂, 1.04 mmol) was added at 0 °C to a stirred solution of 1 (0.173 g, 0.86 mmol) in 8 mL of CH₂Cl₂. In 5 min, the mixture was cooled down to -78 °C, and then Et₃N (0.122g, 1.21 mmol) was slowly added. In 15 min, to the dark-brown reaction mixture was added 2b (0.11 g, 1.04 mmol), and then TiCl₄ (1.04 mL, 1 M in CH₂Cl₂, 1.04 mmol). The resulting mixture was stirred for 7 h at -78 °C, the cooling bath was removed, and at about -50 °C, 2 mL of water was added. The light-yellow mixture was stirred for a while; an additional 10 mL of CH2Cl2 was added. The CH2Cl2 layer was separated, washed with water $(4 \times 5 \text{ mL})$, and dried over sodium sulfate. The solvent was evaporated, giving a crude *syn*-11b/*anti*-12b mixture (98/2 according to ¹⁹F NMR) contaminated mainly with the starting aldehyde. Pure syn-11b was isolated in 71% yield (0.187 g) by column chromatography on SiO₂ (*n*-hexane/CH₂Cl₂ = 1/1). When the aldol reaction of 1 and 2b was carried out in a similar manner at -78 °C in THF, both starting materials were almost fully recovered.

Methyl 3-Hydroxy-3-(2-hydroxyphenyl)-2-(pentafluoro- λ^6 sulfanyl)propanoate (syn-11a). syn-11a/anti-12a (93/7) were obtained from 0.337 g (1.68 mmol) of 1 in 68% yield (0.442 g) by crystallization of the crude reaction mixture from CH₂Cl₂ at -30 °C. White crystals; mp = 109–111 °C; syn-11a: ¹H NMR (400 MHz, CDCl₃): δ 7.21 (td, J_{HH} = 7.8, 1.7 Hz, 1H), 7.11 (dd, J_{HH} = 7.7, 1.5 Hz, 1H), 6.88 (td, J_{HH} = 7.6, 1.1 Hz, 1H), 6.83 (d, J_{HH} = 8.2 Hz, 1H), 6.82 (s, 1H, HOAr), 5.52 (dd, ³J_{HH} = 9.4, 6.0 Hz, 1H, HCOH), 5.07 (dquin, ³J_{HH} = 9.4 Hz, ³J_{HF} = 6.0 Hz, 1H, HCSF₅), 3.59 (d, ³J_{HH} = 6.0 Hz, 1H, OH), 3.51 (s, 3H, OCH₃); ¹³C NMR (101 MHz, CDCl₃): δ 164.6 (quin, ³J = 3.3 Hz, C==O), 154.7, 130.7, 129.9, 122.8, 120.9, 117.6, 87.5 (quin, ²J = 8.7 Hz, HC-SF₅), 73.5 (quin, ³J = 2.4 Hz, HC-OH), 53.2 (OCH₃); ¹⁹F NMR (376 MHz, CDCl₃): δ 80.5 (9 lines, Apart), 66.7 (dd, ²J_{FF} = 146.2, ³J_{FH} = 6.0 Hz, B₄-part); HRMS (EI) Calcd for C₁₀H₁₁F₅O₄S [M]⁺: 322.02982, found: 322.03021.

Methyl 3-Hydroxy-2-(pentafluoro-λ⁶-sulfanyl)-3-phenylpropanoate (syn-11b). Colorless oil; ¹H NMR (401 MHz, CDCl₃): δ 7.34 (m, 5H), 5.42 (dd, ³J_{HH} = 9.4, 3.2 Hz, 1H, HCOH), 4.77 (dquin, ³J_{HH} = 9.4 Hz, ³J_{HF} = 5.8 Hz, 1H, HCSF₅), 3.41 (s, 3H, OCH₃), 2.67 (d, ³J_{HH} = 3.2 Hz, 1H, OH); ¹³C NMR (101 MHz, CDCl₃): δ 164.1 (quin, ³J = 3.2 Hz, C=O), 138.2 (quin, ⁴J = 1.6 Hz), 129.4, 128.8, 127.6, 89.9 (quin, ²J = 8.9 Hz, HC-SF₅), 73.6 (quin, ³J = 2.4 Hz, HC-OH), 53.0 (OCH₃); ¹⁹F NMR (376 MHz, CDCl₃): δ 81.7 (9 lines, Apart), 67.1 (dd, ²J_{FF} = 146.7 Hz, ³J_{FH} = 5.7 Hz, B₄-part); Anal. Calcd for C₁₀H₁₁F₅O₃S: C, 39.22; H, 3.62. Found: C, 39.10; H, 3.61. *Methyl* 3-(3,4-*Dichlorophenyl*)-3-*hydroxy-2-(pentafluoro-\lambda^{6}-sulfanyl)propanoate (syn-11c)*. syn-11c was obtained from 0.345 g (1.72 mmol) of 1 in 79% yield (0.608 g) by column chromatography (*n*-hexane/CH₂Cl₂ = 3/1). Yellowish oil; ¹H NMR (400 MHz, CDCl₃): δ 7.49 (m, 1H), 7.42 (dd, *J* = 8.3, 1.9 Hz, 1H), 7.21 (dm, *J* = 8.3 Hz, 1H), 5.39 (dd, ³J_{HH} = 9.1, 4.8 Hz, 1H, HCOH), 4.68 (d, ³J_{HH} = 9.1 Hz, ³J_{HF} = 5.8 Hz, 1H, HCSF₅), 3.54 (s, 3H, OCH₃), 2.99 (bm, 1H, OH); ¹³C NMR (101 MHz, CDCl₃): δ 164.2 (quin, ³J = 3.0 Hz), 138.4, 133.6, 133.1, 130.8, 129.7, 127.0, 89.2 (quin, ²J = 9.2 Hz), 72.5 (quin, ³J = 2.1 Hz), 53.4 (OCH₃); ¹⁹F NMR (376 MHz, CDCl₃): δ 80.1 (9 lines, A-part), 66.7 (dd, ²J_{FF} = 146.8 Hz, ³J_{FH} = 5.1 Hz, B₄-part); HRMS (EI) Calcd for C₁₀H₂Cl₂F₅O₃S [M]⁺: 373.95696, found: 373.95667.

Methyl 3-Hydroxy-3-(4-methoxyphenyl)-2-(pentafluoro- λ^{6} sulfanyl)propanoates (syn-11d/anti-12d). syn-11d and anti-12d were isolated as a mixture in 48% yield (0.259 g) by column chromatography on SiO₂ (CH₂Cl₂) of the crude reaction mixture obtained from 0.32 g (1.60 mmol) of 1 and 0.262 g (1.92 mmol) of 2d. Yellowish oil; ¹H NMR (401 MHz, CDCl₃): δ 7.28 (dm, J = 8.7 Hz, 2H-syn), 7.22 (dm, J = 8.7 Hz, 2H-anti), 6.88 (dm, J = 8.7 Hz, 2Hanti), 6.85 (dm, J = 8.7 Hz, 2H-syn), 5.44 (dd, ${}^{3}J_{H-HQ} = 8.5$ Hz, ${}^{3}J_{HH} =$ 4.4 Hz, 1H, HCOH-anti), 5.38 (dd, ${}^{3}J_{HH} = 9.6$ Hz, ${}^{3}J_{H-HO}$ 3.0 Hz, 1H, HCOH-syn), 4.73 (dquin, ${}^{3}J_{HH} = 9.6$ Hz, ${}^{3}J_{HF} = 6.0$ Hz, 1H, HCSF₅-syn), 4.63 (dquin, ${}^{3}J_{HH} = 4.4$ Hz, ${}^{3}J_{HF} = 6.4$ Hz, 1H, HCSF₅-anti), 4.07 (d, J = 8.5 Hz, 1H, OH-anti), 3.79 (s, 3H, Ar-OCH₃-anti), 3.78 (s, 3H, Ar-OCH₃-syn), 3.72 (s, 3H, COOCH₃-anti), 3.44 (s, 3H, COOCH₃syn), 2.59 (d, ${}^{3}J_{HH} = 3.0$ Hz, 1H, OH-syn); ${}^{13}C$ NMR (101 MHz, CDCl₃): δ 166.0 (quin, ³*J* = 3.1 Hz, C=O-*anti*), 164.1 (quin, ³*J* = 3.2 Hz, C=O-syn), 160.2 (syn), 159.8 (anti), 131.1 (quin, ${}^{4}J$ = 1.0 Hz, anti), 130.4 (quin, ${}^{4}J = 1.2$ Hz, syn), 128.9 (syn), 127.4 (anti), 114.3 (*anti*), 114.2 (*syn*), 90.1 (quin, ²*J* = 8.5 Hz, HCSF₅-*syn*), 86.6 (quin, ²*J* = 8.9 Hz, HCSF₅-*anti*), 73.1 (d, ³*J* = 2.4 Hz, CHOH-*syn*), 72.1 (d, ³*J* = 3.1 Hz, HCOH-anti), 55.3 (anti), 55.3 (syn), 53.5 (COOCH₃-anti), 52.9 (COOCH₃-syn); ¹⁹F NMR (376 MHz, CDCl₃): δ 81.9 (9 lines, A-part-syn), 80.8 (9 lines, A-part-anti), 66.8 (dd, ${}^{2}J_{FF} = 146.4$, ${}^{3}J_{FH} =$ 5.8 Hz, B₄-part-syn), 66.5 (dd, ${}^{2}J_{FF} = 147.2$ Hz, ${}^{3}J_{FH} = 6.2$ Hz, B₄-part-anti); HRMS (EI) Calcd for C₁₁H₁₃F₅O₄S [M]⁺: 336.04492, found: 336.04221.

Methyl 3-(Furan-2-yl)-3-hydroxy-2-(pentafluoro-λ⁶-sulfanyl)propanoate (syn-11e). syn-11e was obtained from 0.379 g (1.89 mmol) of 1 in 52% yield (0.292 g) by column chromatography (CH₂Cl₂). Yellowish oil, stabile in solution for >3 days (eluent or CDCl₃), as well as on SiO₂; the neat product polymerizes spontaneously, giving a black solid residuum (*exothermic!*); ¹H NMR (400 MHz, CDCl₃): δ 7.39 (dd, *J* = 1.5, 1.1 Hz, 1H), 6.40–6.28 (m, 2H), 5.51 (dd, ³*J*_{HH} = 9.5 Hz, ³*J*_{H-OH} = 5.0 Hz, 1H, HCOH), 4.88 (dquin, ³*J*_{HH} = 9.6 Hz, ³*J*_{HF} = 6.0 Hz, 1H, HCSF₅), 3.61 (s, 3H, OCH₃), 2.74 (d, ³*J* = 5.0 Hz, 1H, OH); ¹³C NMR (101 MHz, CDCl₃): δ 164.2 (m, C=O), 150.8 (m), 143.3, 110.8, 109.2, 87.0 (quin, ²*J* = 10.1 Hz, HC-SF₅), 67.1 (HC-OH), 53.3 (OCH₃); ¹⁹F NMR (376 MHz, CDCl₃): δ 80.0 (9 lines, A-part), 66.3 (dd, ²*J*_{FF} = 146.8 Hz, ³*J*_{FH} = 5.9 Hz, B₄-part); MS (EI, *m*/z): 296 (M⁺, 9), 169 (M⁺ – SF₅, 34), 151 (M⁺ – SF₅ – H₂O, 19), 97 (C₃H₅O₂⁺, 100).

Methyl 3-Hydroxy-3-(4-nitrophenyl)-2-(pentafluoro-λ⁶-sulfanyl)propanoate (syn-11f). syn-11f was isolated in 80% yield (0.535 g) by crystallization from CH₂Cl₂ of the crude reaction mixture obtained from 0.381 g (1.90 mmol) of 1 and 0.345 g (2.28 mmol) of 2f added as a CH₂Cl₂ (3 mL) solution. White crystals; mp = 136–137 °C; ¹H NMR (401 MHz, CDCl₃): δ 8.23 (d, ³J_{HH} = 8.8 Hz, 2H), 7.60 (d, ³J_{HH} = 8.8 Hz, 2H), 5.57 (dd, ³J = 8.4, 3.4 Hz, 1H, HCOH), 4.76 (dquin, ³J_{HH} = 8.4 Hz, ³J_{HF} = 5.7 Hz, 1H, HCSF₅), 3.56 (s, 3H, OCH₃), 3.11 (d, ³J_{HH} = 3.4 Hz, 1H, OH); ¹³C NMR (101 MHz, CDCl₃): δ 164.4 (C=O), 148.3, 145.1, 128.7, 123.9, 88.8 (quin, ²J = 9.6 Hz, HC-SF₅), 72.7 (quin, ³J = 2.5 Hz, HC–OH), 53.6 (OCH₃); ¹⁹F NMR (377 MHz, CDCl₃): δ 79.88 (9 lines, A-part), 67.27 (dd, ²J_{FF} = 146.6 Hz, ³J_{FH} = 5.5 Hz, B₄-part); MS (EI, *m*/z): 224 (M⁺ – SF₅, 66), 152 (M⁺ – SF₅CHCO₂CH₃, 100); Anal. Calcd for C₁₀H₁₀F₅NO₅S: *c*, 34.20; H, 2.87; N, 3.99. Found: C, 34.09; H, 2.86; N, 3.97.

Methyl 3-Hydroxy-5-methyl-2-(pentafluoro- λ^6 -sulfanyl)hexanoate (syn-11g). syn-11g was obtained from 0.432 g (2.16 mmol) of 1 in 82% yield (0.510 g) by column chromatography (*n*-hexane/ CH₂Cl₂ = 1/1). Yellowish oil; ¹H NMR (400 MHz, CDCl₃): δ 4.47– 4.30 (m, 2H, HCSF₅-CHOH), 3.82 (s, 1H, OCH₃), 2.49 (bs, 1H, OH), 1.98–1.87 (m, 1H, HC(CH₃)₂), 1.58–1.48 (m, 1H, A-part, CH₂), 1.18–1.10 (m, 1H, B-part, CH₂), 0.94 (d, ³J_{HH} = 6.6 Hz, 3H, CH₃), 0.92 (d, ³J_{HH} = 6.6 Hz, 3H, CH₃); ¹³C NMR (101 MHz, CDCl₃): δ 165.4 (quin, ³J = 3.2 Hz, C=O), 89.7 (quin, ²J = 8.0 Hz, HCSF₅), 69.3 (quin, ³J = 2.0 Hz, HCOH), 53.4 (OCH₃), 43.1 (quin, J = 1.4 Hz, CH₂), 24.6 (s, CH), 23.7 (CH₃), 21.0 (CH₃); ¹⁹F NMR (376 MHz, CDCl₃): δ 81.1 (9 lines, A-part), 66.6 (dd, ²J_{FF} = 148.4 Hz, ³J_{FH} = 3.3 Hz, B₄-part); MS (EI, *m*/z): 229 (M⁺ – *i*-Pr, 80), 159 (M⁺ – SF₅, 35), 69 (C₅H₉⁺, 100), 59 (CO₂CH₃⁺, 35); Anal. Calcd for C₈H₁₅F₅O₃S: C, 33.57; H, 5.28. Found: C, 33.49; H, 5.26.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.6b00946.

X-ray crystallographic data of 11f (CCDC 1454608) (CIF)

X-ray crystallographic data of 7 (CCDC 1454609) (CIF) X-ray crystallographic data of Z-**5d** (CCDC 1454610) (CIF)

X-ray crystallographic data of 3 (CCDC 1454611) (CIF) Experimental details, copies of ¹H, ¹³C, ¹⁹F, 2D NMR spectra of products, projections of X-ray structures of Z-5d, 7, 11f, interpretation of intermolecular interactions in the crystal packings, the AIM molecular graphs, bondtopological and atomic properties for TS1-E and TS1-Z (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: m.ponomarenko@jacobs-university.de.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

A.A.F. is grateful to the University of Giessen (Germany) and the Institute of Applied System Analysis (Kiev, Ukraine) for computing facilities. S.G. acknowledges the German Research Foundation (DFG) for funding within the Emmy Noether grant GR4451/1-1.

REFERENCES

(1) (a) Altomonte, S.; Zanda, M. J. Fluorine Chem. 2012, 143, 57–93.
(b) Crowley, P. J.; Mitchell, G.; Salmon, R.; Worthington, P. A. Chimia 2004, 58, 138–142. (c) Savoie, P. R.; Welch, J. T. Chem. Rev. 2015, 115, 1130–1190. (d) Kirsch, P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2013. (e) Penger, A.; von Hahmann, C. N.; Filatov, A. S.; Welch, J. T. Beilstein J. Org. Chem. 2013, 9, 2675–2680.

(2) Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Aceña, J. L.; Soloshonok, V. A.; Izawa, K.; Liu, H. Chem. Rev. **2016**, 116, 422–518. (3) (a) Additions to CX π -Bonds, Part 2; Knochel, P., Molander, G. A, Eds.; Elsevier: Amsterdam, 2014; Vol. 2. (b) Modern Aldol Reactions: Enolates, Organocatalysis, Biocatalysis and Natural Product Synthesis; Mahrwald, R., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2004; Vol. 1. (c) Cież, D.; Pałasz, A.; Trzewik, B. Eur. J. Org. Chem. **2016**, 2016, 1476–1493.

(4) (a) Dolbier, W. R., Jr.; Zheng, Z. J. Org. Chem. 2009, 74, 5626– 5628. (b) Ponomarenko, M. V.; Lummer, K.; Fokin, A. A.; Serguchev, Y. A.; Bassil, B. S.; Röschenthaler, G.-V. Org. Biomol. Chem. 2013, 11, 8103–8112. (c) Huang, Y.; Gard, G. L.; Shreeve, J. M. Tetrahedron Lett. 2010, 51, 6951–6954. (d) Martinez, H.; Zheng, Z.; Dolbier, W. R., Jr. J. Fluorine Chem. 2012, 143, 112–122. (e) Ponomarenko, M. V.; Kalinovich, N.; Serguchev, Y. A.; Bremer, M.; Röschenthaler, G.-V. J. Fluorine Chem. 2012, 135, 68–74. (f) Winter, R.; Gard, G. L. J. Fluorine Chem. 1994, 66, 109–116. (g) Vida, N.; Václavík, J.; Beier, P.

Beilstein J. Org. Chem. 2016, 12, 110–116. (5) (a) Decostanzi, M.; Campagne, J.-M.; Leclerc, E. Org. Biomol. Chem. 2015, 13, 7351–7380. (b) Saadi, J.; Wennemers, H. Nat. Chem. 2016, 8, 276–280.

(6) (a) Mei, H.; Xie, C.; Aceña, J. L.; Soloshonok, V. A.; Röschenthaler, G.-V.; Han, J. *Eur. J. Org. Chem.* **2015**, 2015, 6401– 6412. (b) Uneyama, K.; Katagiri, T.; Amii, H. *Acc. Chem. Res.* **2008**, 41, 817–829. (c) Nie, J.; Guo, H.-C.; Cahard, D.; Ma, J.-A. *Chem. Rev.* **2011**, 111, 455–529. (d) Ramachandran, P. V.; Otoo, B.; Chanda, P. B. *Tetrahedron Lett.* **2015**, 56, 3019–3022.

(7) Dreier, A.-L.; Matsnev, A. V.; Thrasher, J. S.; Haufe, G. J. Fluorine Chem. 2014, 167, 84–90.

(8) (a) Joliton, A.; Plancher, J. M.; Carreira, E. M. Angew. Chem., Int. Ed. 2016, 55, 2113–2117. (b) Friese, F. W.; Dreier, A.-L.; Matsnev, A. V.; Daniliuc, C. G.; Thrasher, J. S.; Haufe, G. Org. Lett. 2016, 18, 1012–1015.

(9) Zimmerman, H. E.; Traxler, M. D. J. Am. Chem. Soc. 1957, 79, 1920–1923.

(10) Dolbier, W. R., Jr.; Aït-Mohand, S.; Schertz, T. D.; Sergeeva, T. A.; Cradlebaugh, J. A.; Mitani, A.; Gard, G. L.; Winter, R. W.; Thrasher, J. S. J. Fluorine Chem. **2006**, *127*, 1302–1310.

(11) (a) Liu, Y.; Lai, H.; Rong, B.; Zhou, T.; Hong, J.; Yuan, C.; Zhao, S.; Zhao, X.; Jiang, B.; Fang, Q. Adv. Synth. Catal. 2011, 353, 3161–3165. (b) Augustine, J. K.; Bombrun, A.; Venkatachaliah, S.; Jothi, A. Org. Biomol. Chem. 2013, 11, 8065–8072. (c) Itoh, Y.; Yamanaka, M.; Mikami, K. Org. Lett. 2003, 5, 4807–4809. (d) Itoh, Y.; Yamanaka, M.; Mikami, K. J. Am. Chem. Soc. 2004, 126, 13174–13175. (e) Ghosh, A. K.; Shevlin, M. In Modern Aldol Reactions; Mahrwald, R., Ed.; Wiley-VCH: Weinheim, 2004; Vol. 1, pp 63–125.

(12) Manzer, L. E.; Deaton, J.; Sharp, P.; Schrock, R. R. In *Inorganic Syntheses*; Fackler, J. P., Jr., Ed.; John Wiley & Sons, Inc.: Wiley, 1982; pp 135–140.

(13) (a) Zhang, Z.; Han, J.; Li, X.; Cai, S.; Su, J. Chin. J. Chem. 2012, 30, 2779–2785. (b) Leandri, V.; Ruffo, R.; Trifiletti, V.; Abbotto, A. Eur. J. Org. Chem. 2013, 2013, 6793–6801.

(14) Augustine, J. K.; Boodappa, C.; Venkatachaliah, S.; Mariappan, A. *Tetrahedron Lett.* **2014**, *55*, 3503–3506.

(15) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, 2013.

(16) Zhao, Y.; Truhlar, D. G. *Theor. Chem. Acc.* **2008**, *120*, 215–241. (17) The AIM molecular graphs display that the titanium atom in the transition structures is involved into bonding with one of the fluorine atoms of the SF_5 group. All indicators for the Ti–F bond show that it is a polar covalent bond, but significantly weaker than the Ti–Cl and Ti–O bonds (see the SI for details).

(18) (a) Bader, R. F. W. Atoms in Molecules: A Quantum Theory; Oxford University Press: Oxford, U.K., 1990. (b) Bader, R. F. W.; Stephens, M. E. J. Am. Chem. Soc. **1975**, 97, 7391–7399.

(19) Since the coordination of the SF_5 moiety, as well as the THF molecule, with titanium in the TS is possible only for the neutral C= C-OTiCl₃ enolate, this form was a subject of the DFT study. See:

The Journal of Organic Chemistry

(a) Evans, D. A.; Urpi, F.; Somers, T. C.; Clark, J. S.; Bilodeau, M. T. J. Am. Chem. Soc. 1990, 112, 8215–8216. (b) Shinisha, C. B.; Sunoj, R. B. J. Am. Chem. Soc. 2010, 132, 12319–12330. (c) Renzetti, A.; Marrone, A.; Gerard, S.; Sapi, J.; Nakazawa, H.; Re, N.; Fontana, A. Phys. Chem. Chem. Phys. 2015, 17, 8964–8972.

(20) (a) Chebanov, V. A.; Desenko, S. M.; Gurley, T. W. Azaheterocycles Based on α,β -Unsaturated Carbonyls; Springer: Berlin, 2008. (b) Billard, T. Chem.—Eur. J. **2006**, 12, 974–979. (c) De, P.; Baltas, M.; Bedos-Belval, F. Curr. Med. Chem. **2011**, 18, 1672–1703. (d) Weinstabl, H.; Suhartono, M.; Qureshi, Z.; Lautens, M. Angew. Chem., Int. Ed. **2013**, 52, 5305–5308.

(21) (a) Musa, M. A.; Cooperwood, J. S.; Khan, M. O. F. *Curr. Med. Chem.* **2008**, *15*, 2664–2679. (b) Venugopala, K. N.; Rashmi, V.; Odhav, B. *BioMed Res. Int.* **2013**, 2013, 963248. (c) Patil, P. O.; Bari, S. B.; Firke, S. D.; Deshmukh, P. K.; Donda, S. T.; Patil, D. A. *Bioorg. Med. Chem.* **2013**, *21*, 2434–2450.

(22) Reactions Involving an α,β -Unsaturated Carbonyl Compound or Analogue as Electrophilic Component, Cycloadditions, and Boron-, Silicon-, Free-Radical-, and Metal-Mediated Reactions, 2014 ed.; Müller, T. J. J., Ed.; Georg Thieme Verlag: Stuttgart, 2014; Vol. 2013, p 6.

(23) (a) Falkowska, E.; Tognetti, V.; Joubert, L.; Jubault, P.; Bouillon, J.-P.; Pannecoucke, X. *RSC Adv.* **2015**, *5*, 6864–6868. (b) Dolbier, W. R., Jr.; Zheng, Z. J. Fluorine Chem. **2011**, *132*, 389–393.

(24) Falkowska, E.; Laurent, M. Y.; Tognetti, V.; Joubert, L.; Jubault, P.; Bouillon, J.-P.; Pannecoucke, X. *Tetrahedron* **2015**, *71*, 8067–8076.

(25) (a) Kratochvil, J.; Novak, Z.; Ghavre, M.; Novakova, L.; Ruzicka, A.; Kunes, J.; Pour, M. Org. Lett. **2015**, *17*, 520–523. (b) Shibuya, M.; Sato, T.; Tomizawa, M.; Iwabuchi, Y. Chem. Commun. **2009**, 1739–1741. (c) Yuan, H.; Bi, K.-J.; Li, B.; Yue, R.-C.; Ye, J.; Shen, Y.-H.; Shan, L.; Jin, H.-Z.; Sun, Q.-Y.; Zhang, W.-D. Org. Lett. **2013**, *15*, 4742–4745.

(26) Wirtz, L.; Kazmaier, U. Eur. J. Org. Chem. 2011, 2011, 7062–7065.

(27) Tranchant, M.-J.; Dalla, V. *Tetrahedron* 2006, 62, 10255–10270.
(28) Brenna, E.; Crotti, M.; Gatti, F. G.; Monti, D.; Parmeggiani, F.;
Powell, R. W.; Santangelo, S.; Stewart, J. D. *Adv. Synth. Catal.* 2015, 357, 1849–1860.